

### Institute of Energy and mechanical engineering named after A. Burkitbayev Department of Standardization, certification and metrology

## EDUCATIONAL PROGRAM 7M07502 Metrology (by industry)

Code and classification of the field of education: 7M07 Engineering, manufacturing and construction industries

Code and classification of training directions: 7M075 Standardization, certification and metrology (by branches)

Group of educational programs: M130 Standardization, certification and metrology (by industry)

Level based on NQF: 7 Level based on IQF: 7 Study period: 2 y. Number of credits: 120

Educational program 7M07502 - Metrology (by industry) was approved at the meeting of K.I. Satbayev KazNRTU Academic Council

Protocol # 10 dated « 06 » 03 2025.

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council

Protocol # 3 dated « 20 » 12 2024 .

Educational program «7M07502 Metrology (by industry) » was developed by Academic committee based on direction 7M075 Standardization, certification and metrology (by branches)

| Full name        | Academic     | Position            | Workplace        | Signature |
|------------------|--------------|---------------------|------------------|-----------|
|                  | Academic     |                     |                  |           |
|                  | title        | •                   |                  |           |
| Chairperson of A | cademic Com  | mittee:             |                  | I         |
| Aimagambetova    | Master's     | Head of the         | Republican State |           |
| Raushan          | degree       | Department of       | Enterprise       | 11 0      |
|                  |              | Strategic           | "KazStandard"    | Hier-     |
|                  |              | Development and     |                  | UT C      |
|                  |              | Sciences,           |                  |           |
|                  |              | «KazStandard»       |                  |           |
| Teaching staff:  |              | D Di O              |                  | $\frown$  |
| Tatybaev         | Candidate of | Deputy Director of  | KazNRTU          |           |
| Muhtarbek        | Pedagogical  | the A. Burkitbaev   | named after      |           |
|                  | Sciences     | Institute of Energy | K.I.Salpayev     | HALL      |
|                  |              | En ain a anin a     |                  | Minor     |
|                  |              | Engineering.        |                  |           |
| Omarova          | PhD          | Associate professor | KazNRTU          | ^         |
| Zhansaya         |              | of Standardization, | named after      | Dud       |
|                  |              | certification and   | K.I.Satpayev     | Cull      |
|                  |              | department          |                  | -         |
|                  |              | department          |                  |           |
| Employer represe | entatives:   |                     |                  | 1         |
| Aimagambet       | Master's     | Head of the         | Republican State |           |
| ova Raushan      | degree       | Department of       | Enterprise       |           |
|                  |              | Strategic           | "KazStandard"    | Hier -    |
|                  |              | Development and     |                  |           |
|                  |              | Sciences,           |                  |           |
| S4n domán        |              | «KazStandard»       |                  |           |
| Students:        |              | 1                   |                  |           |
| Ivioldabekova    |              | 1st year master's   | Kazinkiu         | 1 Sint    |
| Aruznan          |              | student             | named after      | Junion    |
|                  |              |                     | к.1.Saipayev     |           |

## **Table of contents**

List of abbreviations and designations

- 1. Description of educational program
- 2. Purpose and objectives of educational program
- 3. Requirements for the evaluation of educational program learning outcomes
- 4. Passport of educational program
- 4.1. General information

4.2. Relationship between the achievability of the formed learning outcomes according to educational program and academic disciplines

## List of abbreviations and designations

- EP Educational program
- EO Education outcome
- NQF national qualifications framework
- IQF industry qualification framework
- BD basic disciplines
- PD profile disciplines
- UC University component
- CC Component of choice
- SDG Sustainable Development Goals

## 1. Description of educational program

Master's educational program 7M07502 – "Metrology (by industry)" includes fundamental, natural science, general engineering and professional training of undergraduates in the field of metrology, who have theoretical knowledge and practical skills in professional training in the field of industrial metrology, quality management systems, verification and calibration. It is an educational program in the scientific and pedagogical direction of training and is designed for 2 years of study. The study lasts four semesters, culminating in a Master of Engineering degree, which imparts in-depth knowledge and develops advanced skills for use in a changing and competitive environment.

This EP trains competitive personnel in the field of metrology, focused on ensuring the reliability of measurement results, quality and safety of products and services, with indepth professional competencies in the development and implementation of regulatory and technical documentation, quality management systems, and testing of measuring instruments.

## 2. Purpose and objectives of educational program

**Purpose of EP:** Training competitive personnel in the field of metrology, focused on ensuring the reliability of measurement results, quality and safety of products and services, with in-depth professional competencies in the development and implementation of regulatory and technical documentation, quality management systems, as well as in testing measuring instruments, contributes to the development of scientific and technical potential, increased confidence in measurement results, harmonization with international standards and the achievement of Sustainable Development Goals by increasing the efficiency and sustainability of production processes, as well as creating an inclusive environment that provides equal opportunities for professional growth and development for everyone, including vulnerable groups.

## Tasks of EP:

1. To develop the student's competencies in managing material and information flows in the production of products and provision of services under conditions of universal metrological control;

2. To develop the student's competence to carry out the actions necessary for effective workin the field of metrology;

3. To develop in students teamwork skills, production and ethical responsibility, the ability to work and communicate with various specialists and the need to improve their knowledge and skills;

4. To develop in the student the ability to carry out control and testing during the production process;

5. To develop the student's ability to carry out metrological support activities.

6. To develop the student's competencies in the application of modern digital technologies and innovative methods of measurement and control, as well as in adaptation to the rapidly changing conditions of digitalization of industry and service industries, which contributes to increasing the accuracy and reliability of measurements, the efficiency of production processes, integration with international standards and the achievement of the Sustainable Development Goals (SDG 4) through the introduction of advanced technological solutions that ensure inclusive access to knowledge and technology for all, including vulnerable groups and people with disabilities.

### 3. Requirements for evaluating the educational program learning outcomes

At the final stage of master's preparation, it is envisaged to complete and defend a master's thesis.

The academic disciplines in which a master's thesis is to be defended are determined by the current state compulsory standards of higher professional education.

The master's thesis is the result of independent research under the guidance of a supervisor. The master's thesis is defended at a meeting of the State Attestation Commission.

The final state certification of students is carried out in accordance with the Rules for ongoing monitoring of academic performance, intermediate and final state certification of students in educational organizations. Persons who have fully completed the curriculum for the educational and professional program of higher basic education with the completion of at least 120 academic credits of theoretical training and a final master's thesis, who have successfully defended a master's thesis, are issued a diploma of higher education with the assignment of qualifications and the award of the academic degree "Master of Technical Sciences".

The graduate is also given a diploma supplement, which includes final examination and testgrades in the disciplines studied, an assessment for the defense of the master's thesis, indicating the topic of the master's thesis.

#### 4. Passport of educational program

| № | Field name                 | Comments                                                       |
|---|----------------------------|----------------------------------------------------------------|
| 1 | Code and classification of | 7M07 Engineering, manufacturing and                            |
|   | the field of education     | construction industries                                        |
| 2 | Code and classification    | 7M075 Standardization, certification and metrology             |
|   | of training directions     | (by branches)                                                  |
| 3 | Educational program group  | M130 Standardization, certification and                        |
|   |                            | metrology (by industry)                                        |
| 4 | Educational program name   | 7M07502 - Metrology (by industry)                              |
| 5 | Short description of       | Educational program 7M07502 – "Metrology (byindustry)"         |
|   | educationalprogram         | includes fundamental, natural science, general engineering and |
|   |                            | professional training of undergraduates in the field of        |
|   |                            | metrology, who have theoretical knowledge and practical skills |
|   |                            | in professional training in the field of industrial metrology, |
|   |                            | quality management systems,                                    |

#### 4.1. General information

|    |                            | verification and calibration.                                        |
|----|----------------------------|----------------------------------------------------------------------|
|    |                            |                                                                      |
|    |                            |                                                                      |
|    |                            |                                                                      |
|    |                            |                                                                      |
| 6  | Purpose of EP              | Training competitive personnel in the field of metrology,            |
|    |                            | focused on ensuring the reliability of measurement results,          |
|    |                            | quality and safety of products and services, with in-depth           |
|    |                            | professional competencies in the development and                     |
|    |                            | implementation of regulatory and technical documentation,            |
|    |                            | quality management systems, as well as in testing measuring          |
|    |                            | instruments, contributes to the development of scientific and        |
|    |                            | technical potential, increased confidence in measurement results,    |
|    |                            | harmonization with international standards and the achievement       |
|    |                            | of Sustainable Development Goals by increasing the efficiency        |
|    |                            | and sustainability of production processes, as well as creating an   |
|    |                            | inclusive environment that provides equal opportunities for          |
|    |                            | professional growth and development for everyone, including          |
| 7  |                            | vulnerable groups.                                                   |
| /  | Type of EP                 | New EP                                                               |
| 8  | The level based on NQF     | 7                                                                    |
| 9  | The level based on IQF     |                                                                      |
| 10 | Distinctive features of EP | No                                                                   |
| 11 | List of competencies of    | General competencies:                                                |
|    | educationalprogram         | • Proficiency in English for: searching for scientific and           |
|    |                            | technical information; working with scientific and technical         |
|    |                            | literature; oral and writtencommunication with a native speaker      |
|    |                            | on professional topics and in real life situations.                  |
|    |                            | • Possession of critical systems thinking, transdisciplinarity       |
|    |                            | and cross-functionality.                                             |
|    |                            | • Possession of ICT competencies, ability to developsoftware         |
|    |                            | using algorithmic languages.                                         |
|    |                            | • Possession of skills: independent learning; deepening your         |
|    |                            | knowledge; be open to new information; systems thinking and          |
|    |                            | personal judgment.                                                   |
|    |                            | • The ability to be tolerant of another nationality, race, religion, |
|    |                            | culture; ability to conduct intercultural dialogue.                  |
|    |                            | • Possession of communication skills, ability to collaborate         |
|    |                            | and work in a team.                                                  |
|    |                            | • Ability to work in conditions of high uncertainty and rapidly      |
|    |                            | changing task conditions; work with consumer requests.               |
|    |                            | • Possession of a broad social, political and professional           |
|    |                            | outlook;                                                             |
|    |                            | • Ability to use data from various sources and specialized           |
|    |                            | literature, analyze and critically evaluate historical facts and     |
|    |                            | events.                                                              |
|    |                            | • Knowledge of the basics of entrepreneurship andbusiness            |
|    |                            | economics, readiness for social mobility. Professional               |
|    |                            | competencies:                                                        |
|    |                            | • Possession of skills in analyzing the causes of                    |
|    |                            | nonconformities;                                                     |
|    |                            | • Possesses the skills of generating management decisions in         |
| 1  |                            | the field of metrology in technical systems;                         |

|     |                       | • Has the skills to independently solve problems in the field of |
|-----|-----------------------|------------------------------------------------------------------|
|     |                       | metrology based on the latest achievements of science and        |
|     |                       | technology;                                                      |
|     |                       | • Has the skills to determine the forms and methods of legal     |
|     |                       | protection and defense of rights to the results of intellectual  |
|     |                       | activity;                                                        |
|     |                       | • Has the skills to develop and improve processes in relation to |
|     |                       | metrology problems;                                              |
|     |                       | • Has the skills to reduce risks in quality assurance systems;   |
|     |                       | • Has the skills to implement changes in quality assurance       |
|     |                       | systems to maintain quality;                                     |
|     |                       | • Possesses management skills in the creation of methodological  |
| 1.0 |                       | and regulatory documents in the field of metrology.              |
| 12  | Education outcomes of | EO 1 – To use knowledge to apply methods of intellectual         |
|     | educationalprogram    | property protection in the Republic of Kazakhstan                |
|     |                       | EO 2 - To use the ability to carry out calculations to estimate  |
|     |                       | errors, uncertainty of measurement results, to determine the     |
|     |                       | requirements for factors affecting the measurement error         |
|     |                       | (uncertainty).                                                   |
|     |                       | $EO_3 - 10$ use the acquired knowledge, skills and               |
|     |                       | qualifications for carrying out work on metrological support     |
|     |                       | of production, testing and operation of measuring instruments.   |
|     |                       | EO 4 - 10 use the skills and abilities of developing             |
|     |                       | verification methods, calibration methods, certification         |
|     |                       | methods, measuring instruments test methods, measurement         |
|     |                       | EQ5. To most on the basics of philosophical local and aritical   |
|     |                       | thinking with application in life                                |
|     |                       | EQ 6 To use communication skills in professional and             |
|     |                       | interpersonal relationships                                      |
|     |                       | EO.7 - To use the acquired knowledge for the organization of     |
|     |                       | work on preparation for laboratories accreditation               |
|     |                       | EO 8 – To use the skills of an innovative approach to            |
|     |                       | participate in the development of projects and planned tasks     |
|     |                       | for the introduction of new measuring equipment.                 |
|     |                       | organizational and technical measures to improve production      |
|     |                       | efficiency.                                                      |
|     |                       | EO 9 - To use the acquired knowledge to improve the legal        |
|     |                       | framework of metrological activities, for further development    |
|     |                       | of metrological services, for use and implementation of          |
|     |                       | international experience.                                        |
|     |                       | EO 10 – To use the acquired knowledge to monitor the             |
|     |                       | condition and use of standards, measuring instruments, testing   |
|     |                       | equipment and standard samples, ensuring the accuracy,           |
|     |                       | reliability and reproducibility of measurements, compliance      |
|     |                       | with regulatory requirements, improving product quality and      |
|     |                       | achieving the Sustainable Development Goals (SDG 4)              |
|     |                       | through the introduction of modern metrological support          |
|     |                       | methods, as well as creating an inclusive environment that       |
|     |                       | ensures equal access to technology and professional              |
|     |                       | development for all, including vulnerable groups and people      |
|     |                       | with disabilities.                                               |

| 13 | Education form           | Full-time                                                       |
|----|--------------------------|-----------------------------------------------------------------|
| 14 | Period of training       | 2 years                                                         |
| 15 | Amount of credits        | 120                                                             |
| 16 | Languages of instruction | Kazakh, russian, english                                        |
| 17 | Academic degree awarded  | Master of technical sciences                                    |
| 18 | Developer(s) and authors | Aymagambetova R. head of department,<br>"Kazstandard";          |
|    |                          | Tatybayev M., Deputy Director of the A. Burkitbaev Institute of |
|    |                          | Energy and Mechanical Engineering.                              |
|    |                          | Omarova Z. Assoc. prof. of the department SS&M                  |
|    |                          | Moldabekova A., master's student, 1 year                        |

# 4.2. Relationship between the achievability of the formed learning outcomes based on educational program and academic disciplines

| N₂ | Discipline           | Short description of discipline                                                                                                                                                            | Numb   | Generated education outcomes (codes) |     |     |          |     |     |     |     |     |      |  |  |
|----|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------|-----|-----|----------|-----|-----|-----|-----|-----|------|--|--|
|    | name                 |                                                                                                                                                                                            | er of  | EO1                                  | EO2 | EO3 | EO4      | EO5 | EO6 | EO7 | EO8 | EO9 | EO10 |  |  |
|    |                      |                                                                                                                                                                                            | credit |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    |                      | Basic disciplines cycle                                                                                                                                                                    | 5      |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    | University component |                                                                                                                                                                                            |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    | Foreign              | The course is aimed at studying the main problems of scientific knowledge in the context of                                                                                                |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    | language             | its historical development and philosophical understanding, the evolution of scientific                                                                                                    |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
| 1. | (professional)       | theories, principles and methods of scientific research in the historical construction of scientific paintings of the world. The discipline will halp to master the skills of developing   | 3      | V                                    |     |     |          |     |     |     |     |     |      |  |  |
|    |                      | critical and constructive scientific thinking based on research on the history and philosophy                                                                                              |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    |                      | of science. At the end of the course, undergraduates will learn to analyze the ideological and                                                                                             |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    |                      | methodological problems of science and engineering and technical activities in building                                                                                                    |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    |                      | Kazakhstan's science and the prospects for its development.                                                                                                                                |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    | History and          | Purpose: to explore the history and philosophy of science as a system of concepts of global<br>and Kazakh science. Content: the subject of philosophy of science, dynamics of science, the |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    | philosophy of        | main stages of the historical development of science, features of classical science, non-                                                                                                  |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
| _  | science              | classical and post-non-classical science, philosophy of mathematics, physics, engineering and                                                                                              | _      |                                      |     |     |          |     |     |     |     |     |      |  |  |
| 2. |                      | technology, specifics of engineering sciences, ethics of science, social and moral                                                                                                         | 3      |                                      | V   |     |          |     |     |     |     |     |      |  |  |
|    |                      | responsibility of a scientist and engineer.                                                                                                                                                |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    | Higher school        | education nedagogy. The discipline will help to master the skills of modern nedagogical                                                                                                    |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    | pedagogy             | technologies, technologies of pedagogical design, organization and control in higher                                                                                                       |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
| 2  |                      | education, skills of communicative competence. At the end of the course, undergraduates                                                                                                    | 2      |                                      |     |     |          |     |     |     |     |     |      |  |  |
| 3. |                      | learn how to organize and conduct various forms of organizing training, apply active teaching                                                                                              | 3      |                                      |     |     |          | V   |     |     |     |     |      |  |  |
|    |                      | methods, and select the content of training sessions. Organize the educational process on the basis of credit technology of education                                                      |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    | Psychology of        | The course is aimed at mastering the tools for effective employee management, based on                                                                                                     |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    | management           | knowledge of the psychological mechanisms of the manager's activity. Discipline will help                                                                                                  |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    | C .                  | you master the skills of making decisions, creating a favorable psychological climate,                                                                                                     |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
| 4. |                      | motivating employees, setting goals, building a team and communicating with employees. At                                                                                                  | 3      |                                      | V   |     |          |     |     |     |     |     |      |  |  |
|    |                      | their own image analyze situations in the field of managerial activity as well as negotiate                                                                                                |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    |                      | be stress-resistant and effective leaders.                                                                                                                                                 |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    | •                    | Cycle of basic disciplines                                                                                                                                                                 |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    |                      | Component of choice                                                                                                                                                                        |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    | Copyright            | Purpose: to investigate and employ strategies for safeguarding intellectual property within                                                                                                |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    | protection in        | the realm of metrology. It aims to analyze current challenges pertaining to metrological                                                                                                   |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    | the field of         | protection of intellectual property in the Republic of Kazakhstan. Content: encompasses the                                                                                                |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
| 5. | metrology            | examination and application of methodologies for protecting intellectual property in                                                                                                       | 5      |                                      |     |     | <b>.</b> |     |     |     |     |     |      |  |  |
|    |                      | safeguarding of intellectual property within the specific context of the Depublic of                                                                                                       |        |                                      |     |     | v        |     |     |     | v   |     |      |  |  |
|    |                      | Kazakhstan                                                                                                                                                                                 |        |                                      |     |     |          |     |     |     |     |     |      |  |  |
|    |                      | Kazakhstan.                                                                                                                                                                                |        |                                      |     |     |          |     |     |     |     |     |      |  |  |

|     | Intellectual    | The purpose of this course is to provide undergraduates with the knowledge and skills            |   |   |   |   |   |   |  |   |
|-----|-----------------|--------------------------------------------------------------------------------------------------|---|---|---|---|---|---|--|---|
|     | property and    | necessary to understand, protect and manage intellectual property (IP) in the context of         |   |   |   |   |   |   |  |   |
| C   | research        | scientific research and innovation. The course is aimed at training specialists who can          | 5 |   |   |   |   |   |  |   |
| 0.  |                 | effectively work with IP, protect the results of scientific research and apply them in practice. | 5 |   |   | V |   |   |  |   |
|     | Commercializat  | Purpose: to explore the commercialization system within the Republic of Kazakhstan, to           |   |   |   |   |   |   |  |   |
|     | ion of new      | analyze methods for developing and implementing new technologies in the enhancement and          |   |   |   |   |   |   |  |   |
|     | technologies in | advancement of production technologies. Content: examination of the commercialization            |   |   |   |   |   |   |  |   |
| 7.  | metrology       | framework in Kazakhstan, with particular emphasis on the operations of the National Agency       | 5 |   |   |   |   |   |  |   |
| -   |                 | for Technological Development. Involves studying strategies for the development and              | _ |   | V |   |   |   |  |   |
|     |                 | integration of innovative technologies, as well as exploring contemporary directions for         |   |   |   |   |   |   |  |   |
|     |                 | enhancing and refining production technologies.                                                  |   |   |   |   |   |   |  |   |
|     | Metrological    | Purpose: to delve into the principles of technical control, measurement instruments, and the     |   |   |   |   |   |   |  |   |
|     | support of      | process of control. It aims to enhance the mechanisms facilitating departmental collaboration    |   |   |   |   |   |   |  |   |
|     | enterprises (by | to ensure measurement uniformity and metrological support across various sectors of the          |   |   |   |   |   |   |  |   |
| 8.  | industry)       | economy. Content: entails the exploration of technical control principles, measurement           | 5 |   |   |   |   |   |  |   |
|     |                 | instrument functionalities, and control methodologies. It also focuses on refining               |   | V |   |   |   | V |  |   |
|     |                 | interdepartmental coordination to maintain measurement consistency and provide                   |   |   |   |   |   |   |  |   |
|     | D1 ' 1          | metrological assistance across diverse economic sectors.                                         |   |   |   |   |   |   |  |   |
|     | Planning and    | Objective: To study methods for developing and structuring an action plan aimed at               |   |   |   |   |   |   |  |   |
|     | implementation  | implementing new methodologies to improve the efficiency of an organization (or                  |   |   |   |   |   |   |  |   |
| 9.  | for sustainable | reductivity the implementation of innovative solutions improved resource management              | 5 |   |   | V |   |   |  | V |
|     | development of  | and the achievement of the Sustainable Development Goals (SDG 4) through sustainable             |   |   |   |   |   |   |  |   |
|     | the             | development digital transformation and the creation of an inclusive environment that ensures     |   |   |   |   |   |   |  |   |
|     | organization    | equal opportunities for participation and professional growth of all employees including         |   |   |   |   |   |   |  |   |
|     | orgunization    | vulnerable groups. Content: delves into the study of methodologies for developing and            |   |   |   |   |   |   |  |   |
|     |                 | coordinating action programs aimed at the implementation of innovative approaches aimed          |   |   |   |   |   |   |  |   |
|     |                 | at optimizing organizational efficiency.                                                         |   |   |   |   |   |   |  |   |
|     | Modern trends   | Purpose: To provide master's degree students with in-depth knowledge and practical skills to     |   |   |   |   |   |   |  |   |
|     | in sustainable  | develop, implement and manage strategies aimed at improving the quality of products and          |   |   |   |   |   |   |  |   |
| 10. | development     | services, optimizing production processes, ensuring compliance with international standards,     |   |   |   |   |   |   |  |   |
|     | strategy        | introducing innovative technologies and achieving the Sustainable Development Goals (SDG         | 5 |   |   |   |   |   |  |   |
|     |                 | 4) through sustainable development, efficient resource management and creating an inclusive      | 2 |   |   |   | v |   |  |   |
|     |                 | environment that provides equal opportunities for professional growth and participation of       |   |   |   |   |   |   |  |   |
|     |                 | all, including vulnerable groups and people with disabilities. The course content covers the     |   |   |   |   |   |   |  |   |
|     |                 | following topics: principles and basic concepts of sustainable development, economic and         |   |   |   |   |   |   |  |   |
|     |                 | social aspects of sustainability, development and implementation of sustainable growth           |   |   |   |   |   |   |  |   |
|     |                 | strategies, innovative approaches and technological solutions for sustainable development,       |   |   |   |   |   |   |  |   |
|     |                 | ethical standards in the context of sustainable development, as well as the prospects and future |   |   |   |   |   |   |  |   |
|     |                 | of sustainable practices in the context of global change.                                        |   |   |   |   |   |   |  |   |
|     |                 | Cycle of profile disciplines                                                                     |   |   |   |   |   |   |  |   |
|     |                 | University component                                                                             |   |   |   |   |   |   |  |   |

| 11. | Accreditation<br>of testing and<br>calibration<br>laboratories<br>according to<br>GOST ISO/IEC | Purpose: to establish the general prerequisites for the competency of testing and calibration<br>laboratories. It further seeks to elucidate the accreditation process for such laboratories,<br>including testing, verification, and calibration centers. Content: encompasses defining the<br>essential criteria for ensuring the competence of testing and calibration laboratories. It delves<br>into the accreditation procedures applicable to testing, verification, and calibration facilities.<br>The course examines the hierarchical arrangement and functions of the accreditation body | 5 |   |   |   | v | v |   |      |
|-----|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|------|
|     | Mathematical<br>processing of                                                                  | Purpose: to explore techniques for statistically processing measurement and test results. It is designed to provide students with an understanding of statistical methods for estimating                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |   |   |   |   |   | <br> |
| 12. | verification and<br>calibration<br>results                                                     | distribution parameters and constructing multiple linear correlation models. Content: covers<br>methods for estimating distribution parameters, such as mean and variance, and explores the<br>construction of multiple linear correlation models to analyze relationships between variables.<br>Through this course, students will gain proficiency in statistical analysis applicable to various<br>fields of measurement and testing.                                                                                                                                                            | 5 |   |   | V |   |   |   | V    |
| 13. | Metrological<br>examination<br>and<br>accreditation                                            | Purpose: To impart knowledge and skills related to the assessment and certification of measurement processes, principles of metrology, calibration methods and compliance with standards necessary to ensure accurate and reliable measurements. Content: metrological principles, calibration techniques and examination and accreditation procedures. The importance of measurement accuracy, traceability and the role of regulators in ensuring compliance with international standards. Practical exercises and case studies are included to reinforce learning.                               | 4 |   |   |   | v |   |   |      |
| 14. | Quality<br>assurance of<br>measurements<br>in laboratories                                     | Purpose: to uphold the accuracy and impartiality of measurements by focusing on methods<br>to ensure reliability and objectivity. It aims to equip learners with the skills to evaluate<br>measurement results and ascertain their uncertainty. Content: covers strategies and<br>techniques to maintain the reliability and objectivity of measurements. It delves into the<br>evaluation of measurement outcomes and the assessment of their uncertainty. Furthermore,<br>the course explores methods for estimating input values and determining their standard<br>deviations.                   | 5 |   | V |   |   |   |   |      |
| 15. | Patent-<br>licensing<br>activity                                                               | Purpose: to enable students to identify and acquire patents for inventions, utility models, or industrial designs. It focuses on understanding the conditions necessary for the patentability of industrial property objects. Content: the conditions and criteria for determining the patentability of objects. Additionally, the course delves into the procedures and requirements involved in obtaining patents, providing students with practical knowledge and skills in navigating the patenting process.                                                                                    | 5 |   |   | v |   |   |   |      |
| 16. | Applied,<br>regulatory and<br>methodological<br>aspects of<br>verification and<br>calibration  | Purpose: to examine the system of verification and calibration for measuring instruments in Kazakhstan. It aims to familiarize students with the ILAC policy concerning the traceability of measurement results Content: encompasses a comprehensive study of the verification and calibration system for measuring instruments in Kazakhstan. It includes an overview of the ILAC policy focusing on traceability and the standards set forth by the BIPM for determining calibration frequencies.                                                                                                 | 5 |   |   |   |   |   | V |      |
| 17. | Traceability of measurements                                                                   | Purpose: To understand and determine the metrological traceability of measurement results, ensuring the accuracy and reliability of measurements in scientific and industrial applications. Content: studying the BIPM traceability chain, measurement uncertainty, and their roles in quality management. Explore standards, certification procedures, and data-driven decision-making, including modules on performance metrics, data analysis, and managing processes based on data insights.                                                                                                    | 5 | v |   |   |   |   |   |      |

|     |                              | Development<br>of the reference                                                             | Purpose: to examine the reference base of the Republic of Kazakhstan and the state system established to ensure measurement uniformity, to explore methods for both quantitative and                                                                                                                                                                                                                                                                                                                                                                                                                       |   |  |   |  |   |   |  |   |   |   |  |
|-----|------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|---|--|---|---|--|---|---|---|--|
| 18. | 8.                           | base                                                                                        | qualitative advancement and enhancement of the reference base within the republic. Content:<br>encompasses an in-depth study of the reference base of Kazakhstan, including its<br>establishment and maintenance. Additionally, the course covers strategies for both<br>guantitative and qualitative development and improvement of the reference base                                                                                                                                                                                                                                                    | 5 |  |   |  | v | r |  |   |   |   |  |
| 19  | 9.                           | Development<br>and<br>certification of<br>measurement<br>techniques                         | Purpose: to delve into the methodologies for developing and certifying measurement techniques. It aims to elucidate the sequence for applying these techniques and the process of metrological control over measurement methods. Content: encompasses the study of techniques for developing and certifying measurement methods. It also includes the exploration of the order in which these techniques are applied and the procedures involved in metrological control to ensure the accuracy and reliability of measurement methods.                                                                    | 5 |  |   |  | v | , |  | v | , |   |  |
|     | Cycle of profile disciplines |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |   |  |   |   |  |   |   |   |  |
| 2   | 20.                          | Conducting<br>interlaboratory<br>comparisons in<br>accordance<br>with GOST<br>ISO/IEC 17043 | Purpose: to investigate and assess the effectiveness and comparability of test or measurement methods. To equip students with the skills to evaluate method characteristics and identify differences between laboratories. Content: examination of various test or measurement methods, focusing on their effectiveness and comparability. Techniques for evaluating method characteristics and discerning disparities between different laboratory practices. Analyzing and comparing test or measurement methods, thereby enhancing students' ability to make informed decisions in laboratory settings. | 5 |  |   |  | V |   |  | v | , |   |  |
| 2   | 1.                           | Modern aspects<br>of development<br>of metrology                                            | Purpose: to explore contemporary developments in metrology that address the material, social, and cultural needs of the present era. The evolution of methods for determining measurement accuracy, establishing unity, and creating standards and exemplary measuring instruments. Content: modern aspects of metrology, highlighting advancements that cater to current material, social, and cultural demands. Development of techniques for assessing measurement accuracy, fundamentals of ensuring unity in measurements, and the process of creating standards and exemplary measuring instruments. | 5 |  | V |  |   |   |  |   |   | v |  |